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Abstract: Paraoxonase-1 is a lactonase and an esterase and it plays a protective role in toxicity as well as in diseases in-

volving oxidative stress. Recently, insights into how it may be modulated by environmental factors have acquired clinical 

relevance. This article reviews the state-of-the-art evidence regarding PON1 modulation by pharmacological products as 

well as nutritional and lifestyle factors. 
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INTRODUCTION 

Research into paraoxonase-1 (PON1) has flourished over the 
past few years. This enzyme belongs to a group currently 
containing 3 members: PON1, PON2 and PON3 the genes of 
which are located adjacent to each other on chromosome 
7q21-22 [1, 2]. In humans, PON1 and PON3 genes are ex-
pressed, essentially, in the liver and kidney and their protein 
products are found in the circulation bound to high-density 
lipoprotein (HDL) [3-6]. Conversely, PON2 gene is ex-
pressed a variety of tissues. Its protein product is an intracel-
lular enzyme which is not, however, found in plasma [7]. 
PON1 has esterase and lactonase activities [8]. It hydrolyses 
homocysteine thiolactone as well as the active metabolites of 
several organophosphate insecticides (paraoxon, chlorpyrifos 
oxon, and diazoxon) and the nerve agents sarin and soman 
[9]. PON2 and PON3 are not active against organophosphate 
substrates, but have lactonase activity [10]. All the three 
PON enzymes are able to retard low density lipoprotein 
(LDL) oxidation [11], while PON2 retards cellular oxidative 
stress and prevents apoptosis in vascular endothelial cells 
[12]. Existing evidence indicates that the PON enzyme fam-
ily plays a protective role in several diseases involving oxi-
dative stress, including cardiovascular diseases, Alzheimer’s 
disease, diabetes, metabolic syndrome, and liver diseases 
[13, 14].  

 The main determinants of PON1 levels in the circulation 
are its gene polymorphisms. Many polymorphisms have 
been identified in the coding, intronic, and promoter regions 
of the PON1 gene [15, 16]. The polymorphisms in the cod-
ing region that have been identified to-date are: Arg/Gln 
substitution at position 192 (PON1192 polymorphism with 
two alleles termed Q and R); and Leu/Met substitution at 
position 55 (PON155 polymorphism with two alleles termed  
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L and M). Garin et al. [17] evaluated the influence of these 
polymorphisms on the enzyme’s activity as well as its con-
centration, and observed important differences in relation to 
the PON155 genotype; individuals carrying the LL isoform 
having higher serum PON1 concentrations than those with 
MM at this position. In contrast, the PON1192 polymorphism 
affected the enzymatic activity, but had little impact on the 
serum PON1 concentration. The QQ isoform hydrolyses 
paraoxon much less efficiently than does the RR isoform, 
while the opposite occurs for soman and sarin. The polymor-
phisms in the promoter region, PON1-108, PON1-909 and
PON1-1741, have also been reported to be significantly asso-
ciated with changes in the serum enzyme concentration, or 
activity [18].  

PHYSIOLOGICAL ROLE AND MECHANISM OF 
ACTION OF PON1 

 Mackness et al. reported, in 1991 [19], the first evidence 
that the physiological function of PON1 is to protect lipopro-
teins and cells from oxidative stress by hydrolysing lipid 
peroxides. These authors observed that purified PON1 pre-
vented lipoperoxide generation during the process of LDL 
oxidation in vitro, and suggested that PON1 may be involved 
in the protective function of HDL. Subsequent studies from 
this group and others reached the conclusion that PON1 de-
grades specific oxidised cholesteryl esters and oxidised 
phospholipids contained in oxidised lipoproteins [20-26]. 
Experimental studies provided support for the data from the 
in vitro experiments. Probably the most conclusive data were 
generated in the PON1

(-/-)
 mouse model and the human-

PON1 transgenic mouse model [27-30]. Apolipoprotein E 
KO mice had lower lipoprotein oxidation and atherosclerosis 
than PON1 plus apolipoprotein E double KO mice [28]. 
HDL fractions isolated from PON1

(-/-)
 mice were unable to 

prevent LDL oxidation in cultured arterial tissue, in contrast 
to the HDL obtained from control mice [28]. In agreement 
with these observations, over-expression of human PON1 in 
transgenic mice inhibits lipid peroxide formation in HDL, 
and protects the LDL structure and function [29]. Despite 
this experimental evidence, the precise biochemical mecha-
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nism of the enzyme activity that mediates these functions 
remains elusive, as does the identity of its endogenous sub-
strate. Directed evolution and structure-function studies sug-
gest that PON1 is a six-bladed beta propeller with a unique 
active site lid that is also involved in HDL binding (Fig. 1), 
and that the primordial function of PON1 is that of a lipolac-
tonase [31-35] which subsequently evolved new substrate 
specificities. These studies also established that the preferred 
substrates of PON1 are 5- and 6-membered ring lactones, 
typically with aliphatic side-chains [36]. A model has been 
proposed that links PON1 lactonase activity with its ability 
to degrade oxidised lipids [37,38] such that oxidised lipids 
containing hydroxyl groups at the 5’ position could be lac-
tonised by PON1 to yield lysophosphatidylcholine and -
valerolactone products. According to this hypothesis, the 
ability of PON1 to degrade lipid peroxides is secondary to its 
lipolactonase activity.  

 A comprehensive Review on the biochemistry of PON1, 
its mechanism of action as well as assay methods and impli-
cations in disease, has been published recently [39]. Since 
serum PON1 deficiency has been associated with various 
common diseases, the possibility to modulate its activity 
seems to be an interesting, even if still unknown, new thera-
peutic option with several potential implications. In the pre-
sent article we review the recent efforts directed towards 
increasing serum PON1 levels by means of pharmacological 
or nutritional interventions, and we comment upon some 
lifestyle habits that may have an impact on this enzyme. 

INFLUENCE OF LIPID-LOWERING DRUGS ON 
PON1 STATUS 

 Cardiovascular disease (CVD) is one of the leading 
causes of morbidity and mortality in Western countries. Ele-
vated LDL-cholesterol and triglycerides, and decreased 
HDL-cholesterol concentrations are important modifiable 
risk factors in the individual’s predisposition to CVD. Over 
the last few decades several therapeutic strategies have been 
employed to improve the lipid profile of the at-risk individ-
ual and, in doing so, to prevent atherogenesis. Of these, the 

pharmaceutical agents most widely used have been statins 
and fibrates [40]. 

 Statins are the inhibitors of 3-hydroxy-3-methylglutaryl-
coenzyme A (HMG-CoA) reductase. They compete with 
HMG-CoA for binding to the catalytic site of HMG-CoA 
reductase and, consequently, reduce the intracellular biosyn-
thetic conversion of mevalonic acid to cholesterol [41]. A 
consequence is cellular upregulation of the LDL-cholesterol 
receptor, enhanced LDL uptake from the circulation and, 
finally, irreversible cholesterol catabolism mainly by the 
liver [42]. In addition, statins induce several beneficial ef-
fects independently of cholesterol regulation. These include 
improvement of endothelial function, increased nitric oxide 
bioavailability, and antioxidant and anti-inflammatory ef-
fects [43]. The chemical structures of the more important 
statins are shown in (Fig. 2). 

 Over the last decade, there have been several clinical and 
experimental studies suggesting that the antioxidant effects 
of statins may be mediated, at least in part, by an increase of 
serum PON1 activity and/or concentration. Tomàs et al. [44] 
were to the first to report that simvastatin administration (20 
mg/day for 4 months) increased serum PON1 activity in hy-
percholesterolaemic patients. The increases were modest 
(about 12% on average) and were accompanied by signifi-
cant decreases in serum cholesterol and lipid peroxides, as 
well as LDL-cholesterol concentrations. They did not find 
any significant modulation associated with HDL-cholesterol 
levels or with PON1192 and PON155 DNA polymorphisms. 
Harangi et al. [45] observed that atorvastatin (10 mg/day for 
6 months) increased serum PON1 activity in hypercholes-
terolaemic patients, with changes in lipid profile and oxida-
tive stress similar to those described by Tomàs et al. (de-
scribed above). Kassai et al. [46] also confirmed that 
atorvastatin (20 mg/day for 3 months) increased serum 
PON1 activity. This statin has been shown to increase serum 
PON1 activities in experimental rabbits fed a high-
cholesterol diet [47]. However, Bergheanu et al. [48] re-
ported that atorvastatin (increasing doses up to 80 mg/day for 

Fig. (1). Chemical structure of PON1.  

(a) View from above of the six-bladed -propeller configuration. The top of the propeller is, by convention, the face carrying the loops con-

necting the outer -strand of each blade (strand D) with the inner strand of the next blade. Shown are the N and C termini and the two cal-

cium atoms in the central tunnel of the propeller; (b) A side view of the propeller with the three helices at the top (H1-H3). This figure is 

reproduced from [31] with permission. Copyright: MacMillan Publishers, Nat. Struct. Mol. Biol., 2004. All rights reserved. 
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18 weeks) did not modify serum PON1 activity, although 
rosuvastatin administration (increasing doses up to 40 
mg/day for the same period of time) was associated with a 
significant increase in serum PON1 activity. One of the most 
detailed clinical reports published to-date is that of Mir-
damadi et al. [49]. The study was conducted in 164 hyper-
cholesterolaemic patients subdivided into three groups to 
receive atorvastatin (10 mg/day, n = 61), simvastatin (10-20 
mg/day, n = 46) or fluvastatin (80 mg/day, n = 57) for a pe-
riod of 3 months. The results indicated that all three statins 
were able to increase serum PON1 activity, albeit moder-
ately.  

 To-date, it is not absolutely clear whether the effect of 
statins on serum PON1 levels is secondary to the stimulation 

of PON1 gene expression. Reporter gene assays showed that 
simvastatin up-regulated PON1 promoter activity in HepG2 
and HEK293 cells, but the opposite results were obtained in 
HuH-7 cells [50]. Despite this controversy, Deakin et al. [51] 
were able to identify a statin responsive element at the 
proximal end of the PON1 gene promoter region which con-
tains the C(-108)T as well as the A(-162)G polymorphisms. 
They also found that, within the statin responsive element, 
there were two sequences with homology to the sterol regu-
latory element that binds the sterol regulatory element bind-
ing proteins. These proteins control cholesterol metabolism 
in HepG2 cells and are up-regulated by statins. These data 
suggest that the statin effect on PON1 may be mediated by 
increased interaction between the sterol regulatory element 
binding proteins and the PON1 promoter. 

Fig. (2). Chemical structure of the clinically-most important statins currently in use. 

This figure is reproduced from [41] with permission. Copyright: Prous Science, 2002. All rights reserved. 
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 The main therapeutic function of fibrates is to decrease 
serum triglyceride concentrations, and a mild increase in 
HDL-cholesterol concentration is also achieved. The fibrates 
act via activation of the peroxisome proliferator-activated 
receptor alpha (PPAR- ). PPARs are nuclear receptors that 
form heterodimers with another nuclear receptor termed the 
RXR and they bind to specific response elements in the pro-
moter regions of their genes. PPAR  activators induce the 
expression of apolipoprotein AI, the main apoprotein of 
HDL, and of the ATP-binding cassette of A1 (ABCA1); a 
transporter complex controlling cellular cholesterol efflux. 
[42]. Chemical structures of the more clinically-important 
fibrates are shown in (Fig. 3). 

Fig. (3). Chemical structure of the most frequently used fibrates.

 Reports on the influence of fibrate therapy on serum 
PON1 levels have been conflicting. The increase in enzyme 
activity appears to depend on the type, and perhaps the dos-
age, of fibrate employed. Durrington et al. [52] observed that 
bezafibrate and gemfibrozil, administered for 8 weeks, failed 
to influence serum PON1 activity in type IIb hyperlipidae-
mic patients. Tsimihodimos et al. [53] found that 3 months 
treatment with micronised fenofibrate did not influence 
PON1 levels in types IIa, IIb and IV dyslipidaemic patients. 
Conversely, Paragh et al. [54] observed that a 3 month ad-
ministration of gemfibrozil increased serum PON1 activity in 
patients with hypertriglyceridaemia. This same research 
group found that ciprofibrate administration increased HDL-
cholesterol concentration and serum PON1 activity in pa-
tients with the metabolic syndrome [55]. In rats receiving a 
fructose-enriched diet, an experimental model of liver steato-
sis and the metabolic syndrome, bezafibrate reduced oxida-
tive stress and increased serum PON1 levels [56]. A recent 
report described that micronised fibrate increased the activity 

and concentration of PON1, and reduced oxidised LDL lev-
els in dyslipidaemic patients with low HDL-cholesterol lev-
els and, interestingly, this effect was independent of PON1
gene polymorphisms [57]. There are several potential PPAR-

 binding sites in the PON1 gene promoter. However, 
Gouédard et al. [58] did not observe any increase in PON1
gene expression after PPAR-  activation and this suggested 
that the mechanism of promoter activation induced by fi-
brates does not involve this nuclear receptor.  

ORAL APOLIPOPROTEIN A-I MIMETIC PEPTIDES 

 An interesting line of research is that of the therapeutic 
effects of orally-administered apolipoprotein A-I mimetic 
peptides. The mimetic peptide 4F contains only 18 amino 
acids. It was constructed to contain a class of amphipathic 
helix with polar and non-polar faces which enable it to bind 
lipids in a similar manner to apolipoprotein A-I [59]. In sev-
eral experimental models, 4F synthesized from D-amino 
acids (D-4F) and administered orally, induced the formation 
of anti-inflammatory HDL, increased PON1 activity, en-
hanced reverse cholesterol transport from macrophages, and 
reduced atherosclerosis. D-4F is an apolipoprotein A-I mi-
metic peptide and, like this apolipoprotein, binds and seques-
ters oxidised phospholipids [60-64]. Recently, this peptide 
has been administered in the clinical setting. The safety and 
pharmacokinetic evaluations were conducted in patients with 
coronary heart disease. The study indicated that oral D-4F 
administration did not produce any significant change in 
plasma lipoprotein levels, but improved the patient’s HDL 
anti-inflammatory index [65].  

OTHER PHARMACEUTICAL AGENTS 

 Rosiglitazone is a PPAR  agonist that improves insulin 
sensitivity and glycaemic control, stimulates reverse choles-
terol transport and reduces inflammation in individuals with 
type 2 diabetes [66-68]. In a randomised, cross-over, pla-
cebo-controlled, double-blind clinical trial, rosiglitazone was 
shown to increase fasting PON1 activity, and to attenuate the 
post-prandial fall in PON1 activity; the serum PON1 concen-
tration was observed not to change significantly [69]. A 
combination of rosiglitazone and metformin has been pro-
posed to improve insulin resistance and fat distribution ab-
normalities (lipodystrophy) in patients infected with the hu-
man immunodeficiency virus (HIV) [70]. Both treatments 
increased fasting and post-prandial serum PON1 activity, 
and decreased plasma monocyte chemoattractant protein-1 
concentrations in HIV-infected patients undergoing highly 
active antiretroviral (HAART) therapy [71]. The results of 
these studies indicated that plasma HDL-cholesterol concen-
trations did not significantly change. This suggested that the 
observed effects on PON1 were independent of HDL synthe-
sis.  

 Increased atherogenesis and oxidative stress co-exist in 
obese individuals [72]. Orlistat is a gastrointestinal lipase 
inhibitor that enhances weight reduction in obese subjects, 
and improves post-prandial lipaemia in those with type 2 
diabetes [73]. A recent longitudinal, multi-centre, random-
ised study demonstrated that orlistat administration signifi-
cantly increased serum PON1 activity in obese patients [74]. 
The mechanisms underlying the effects of this drug on PON1 
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are not known, but possibly involve a decreased oxidative 
stress associated with weight loss.  

 Women have a considerably lower CVD risk to their 
male counterparts. This is particularly evident in pre-meno-
pausal ages. Declining oestrogen production is an important 
contributory factor to the increased CVD risk in post-
menopausal women. Menopause is associated with decreased 
HDL-cholesterol and PON1 levels together with increased 
LDL-cholesterol and insulin resistance [75,76]. Observa-
tional studies have shown that post-menopausal hormone 
replacement therapy (HRT) is associated with decreased 
CVD risk [77]. However, this is a controversial issue since 
oestrogens have been reported to enhance the thrombotic 
potential of blood [78]. Two studies in post-menopausal 
women observed a significant increase in serum PON1 activ-
ity following HRT (conjugated oestrogens + medroxypro-
gesterone). This increase was accompanied by an increase in 
HDL concentrations, and a decrease in oxidised LDL levels 
[79,80]. However, another study showed a slight increase in 
serum PON1 activity when oestrogen-alone HRT was pre-
scribed, but a decrease was observed when the treatment 
consisted of oestrogens combined with several progestogens 
(desogestrel, medroxyprogesterone or norethisterone) [81].  

 Several other therapeutic agents have been assessed with 
respect to their effect on the stimulation of PON1 activity. 
The hypotensive drugs, amlodipine and captopril, have been 
shown to enhance the hepatic PON1 content in rats with ex-
perimentally-induced fatty liver [56]. The mechanisms of 
action are not known, but amlodipine has been reported to 
increase HDL-cholesterol concentrations [82]. Both drugs 
improve metabolic syndrome and, probably, decrease oxida-
tive stress in hypertensive patients [82,83]. Exogenous 
erythropoietin-  has been reported to increase serum PON1 
activity without changes in HDL levels, and to improve oxi-
dative stress in pre-dialysis patients with chronic kidney dis-
ease and anaemia [84].  

NUTRITIONAL AND LIFESTYLE FACTORS 

 Several studies have shown that diets relatively rich in 
fruits, vegetables and nuts and combined with a moderate 
intake of red meat and red wine (commonly described as the 
'Mediterranean diet') are protective against CVD [85]. These 
diets have a high content of specific vitamins, minerals, phy-
tochemicals, and oils. Many of these compounds have potent 
biological activities, including anti-oxidative and anti-
inflammatory properties. Some epidemiological studies have 
analysed the effects of differences in dietary habits on PON1 
activity. The results obtained have been inconclusive. For 
example, Jarvik et al. [86] reported that the intake of vita-
mins C and E directly correlate with PON1 activity in pa-
tients attending several American VA health centres. The 
subjects studied were middle-aged and elderly men (44  88 
years) who were receiving prescription medications. How-
ever, Ferré et al. [87] did not find any significant association 
between vitamins C and E intake and PON1 in a Spanish 
population-based study. The participants in the study were 
healthy people with a wide age range (18  75 years of age) 
with an equal distribution with respect to gender. The possi-
bility exists that the differences in dietary regimens between 
the American and the Spanish samples account for this dis-

crepancy. Perhaps the higher amount of antioxidants present 
in the Mediterranean diet obscures the effects of vitamins 
among individuals exposed to a diet higher in saturated fats. 
Kleemola et al. [88], in a study conducted with a population 
of young Finnish women did not find any associations be-
tween these vitamins and PON1. However, they did observe 
an inverse relationship with the intake of -carotenes. These 
conflicting results from epidemiological studies highlight the 
difficulties in reaching unambiguous conclusions on the in-
fluence of diets. Differences in the populations studied. or in 
the methods used for assessment of dietary intakes, may be 
important in these confounding variables. 

 Several reports have studied the effect of vegetable oils 
on serum PON1 activity. An in vitro study [89] reported that 
monoenoic acids (C16:1  C20:1) showed a high degree of pro-
tection of PON1 activity against oxidative stress. This was 
compared to saturated fatty acids (C6  C18) which exhibited 
a modest protection, and polyenoic acids which showed no 
protection. Oleic acid, which is the dominant oil in olive oil, 
was the most effective. An epidemiological study in a Span-
ish population showed that a high intake of oleic acid was 
associated with an increase in serum PON1 activity, although 
only in PON1192 homozygous RR individuals [90]. In a re-
cent experimental study in apolipoprotein E-deficient mice 
that developed atherosclerosis, extra virgin olive oil admini-
stration (a dose equivalent to 25 ml of olive oil in humans 
per day) decreased the atherosclerosis lesion size, enhanced 
the cholesterol efflux from macrophages, and increased se-
rum PON1 activity [91]. Other oils and fats commonly used 
in human feeding studies failed to show any effect on serum 
PON1 activity. Ferré et al. [87] did not observe any signifi-
cant association between the intake of saturated fatty acids 
and tertiles of PON1 activity in a general Spanish popula-
tion. In an intervention cross-over study, the intake of palm 
oil, canola oil, and soybean oil did not show any significant 
influence on serum PON1 activity in moderately hyperlipi-
daemic subjects [92]. In apolipoprotein E-deficient mice that 
developed atherosclerosis, the administration of a dietary 
formula of plant sterol esters of canola fatty acids, in a 
canola oil matrix containing 1,3-diacylglycerol, did not pro-
duce any significant effect on serum PON1 activity, despite a 
significant reduction in oxidative stress parameters [93]. 

 Moderate alcohol intake is associated with a lower athe-
rosclerosis risk [94]. The mechanisms of this effect involve 
an increase in HDL-cholesterol by enhancing the hepatic 
synthesis and transport rate of apolipoproteins A-I and A-II 
[95]. This increase is associated with an increased serum 
PON1 activity. However, the effect of ethanol per se is 
small. Sierksma et al. [5] demonstrated that an alcohol intake 
of 40 g/day in men and 30 g/day in women, increased serum 
HDL-cholesterol by 6.8% and PON1 by 3.7%. In contrast, 
heavy alcohol consumption decreased serum HDL-cholesterol 
and PON1 activity [96,97]. Red wine is well-documented to 
be one of the most cardio-protective alcoholic beverages. 
However, this property is not associated with ethanol, but 
with the high content of antioxidant molecules, essentially 
flavonoids, in the wine. The search of alternative sources of 
natural flavonoids that do not have the deleterious effects of 
ethanol has resulted in several studies assessing the con-
sumption of fruit juices such as pomegranate. Pomegranate 
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juice has a high content of flavonoids including quercetin 
and ellagitannins, of which punicalagin is responsible for 
more than a half of the antioxidant activity [98]. A daily con-
sumption of 50 ml of pomegranate juice for 1 year by pa-
tients with carotid artery stenosis induced an increased serum 
PON1 activity together with decreased levels of oxidised 
LDL and a decrease in the degree of atherosclerosis, as 
measured by the carotid intima-media thickness [99]. Similar 
results were obtained in apolipoprotein E-deficient mice 
when they had pomegranate juice or pure quercetin or cate-
chin added to the daily fluid intake [100-102]. Another im-
portant flavonoid found in grapes and red wine is the phytoa-
lexin resveratrol. This phytochemical increased PON1 gene 
expression in cultured liver cells [103,104] and, when ad-
ministered to apolipoprotein E-deficient mice over a period 
of 20 weeks, increased the HDL-cholesterol levels and serum 
PON1 activity, and reduced LDL-cholesterol and oxidative 
stress [105].  

 Other lifestyle factors have been shown to have an im-
pact on serum PON1 levels. Tobacco smoking significantly 
decreased the enzyme’s activity and concentration, in 
healthy people as well as in patients with CVD [106-108]. 
Cigarette smoke is rich in acetaldehyde, formaldehyde, and 

- -unsaturated aldehydes that react with free thiol groups in 
proteins. Nishio and Watanabe [109] demonstrated that ciga-
rette smoke extracts that included some of these aldehydes, 
decrease PON1 activity by modifying the enzyme's active 
site. The intake of re-used cooking fat, as is common in most 

fast-food restaurants involving deep-frying processes, re-
duces post-prandial serum PON1 activity. Fats that have 
been heated-reheated over protracted periods of time contain 
numerous compounds derived from the oxidation and break-
down of lipids. A meal that is rich in such re-used fat was 
sown to reduce serum PON1 levels by about 30% in healthy 
volunteers [110]. Physical exercise is known to be generally 
healthy and to be cardio-protective. Regular aerobic exercise 
was reported to improve measures of oxidative stress and 
insulin sensitivity in overweight subjects but, surprisingly, 
resulted in decreased serum PON1 activity [111]. However, 
this effect may be prevented by a dietary supplementation 
with -tocopherol [112].  

 Table 1 summarises the possible modes of action of the 
different drugs and nutrients on serum PON1 activity, as 
described in the present review. 

CONCLUSION AND PERSPECTIVES 

 Being able to modulate serum PON1 activity may have 
potential clinical benefits since this enzyme plays an impor-
tant role in many diseases involving increased oxidative 
stress. It also protects against toxic effects of insecticides. 
The present article has highlighted some of the pharmacol-
ogical and lifestyle interventions that could influence serum 
PON1 activity. However, a limitation of most of the studies 
to-date is that the increase in PON1 activity is moderate. 
Interesting lines of research include the administration of 
apolipoprotein A-I mimetic peptides. Nutritional interven-

Table 1. Suggested Mechanisms of Action of the Drugs and Nutrients on PON1, as Described in the Present Review 

Compound Increase in HDL-Cholesterol Possible Mechanism of Action 

Pharmacological 

Statins Controversial PON1 gene up-regulation mediated by the sterol regulatory element  

binding proteins 

Fibrates Yes PPAR-  activation and ABCA1 up-regulation  

Apo A-I mimetic peptides No 

(preliminary data) 

Decreased oxidative stress. Improvement of HDL anti-inflammatory index

Rosiglitazone No Mechanism basically unknown, although it is a PPAR-  activator 

Orlistat Controversial Unknown. Effect on weight loss may induce a decreased oxidative stress

Oestrogens Yes HDL induction. Decreased oxidative stress 

Amlodipine Yes Unknown. May be related to HDL induction or decreased oxidative stress

Captopril No Decreased oxidative stress 

Erythropoietin-  No Decreased oxidative stress 

Nutritional and lifestyle 

Vitamin C No Decreased oxidative stress 

Vitamin E No Decreased oxidative stress 

Monoenoic fatty acids Yes HDL induction 

Polyphenols Yes PON1 gene up-regulation mediated by the aryl hydrocarbon receptor 

Alcohol (moderate) Yes HDL induction 
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tions with fruit juices such as pomegranate or other flavon-
oid-rich natural products have good outcomes in terms of 
PON1 stimulation. In the not-too-distant future, these and 
other new tools will be available for the conduct of well-
designed multi-centred studies in large populations; the ob-
jective being to firmly establish their benefit as therapeutic 
agents. 
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ABBREVIATIONS

ABCA1 = ATP-binding cassette A1 

CVD = Cardiovascular disease 

HDL = High-density lipoprotein 

HIV = Human immunodeficiency virus 

HAART = Highly active antiretroviral therapy 

HMG-CoA = 3-hydroxy-3-methylglutaryl-coenzyme A 

HRT = Hormone replacement therapy 

LDL = Low-density lipoproteins 

PON = Paraoxonase 

PPAR = Peroxisome proliferator-activated receptor 
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